Time integration and the Trefftz Method, Part I – First-order and parabolic problems
نویسنده
چکیده
The finite element method is applied in the time domain to establish formulations for the integration of first-order and parabolic (transient) problems. The modal decomposition concept is applied using two distinct approaches. The first is based on modal decomposition in the space domain to recover the well-established method for uncoupling the parabolic system of equations. To overcome the limitations of this approach in the implementation of large-scale, non-linear problems, the second approach that is reported consists in inducing uncoupling through modal decomposition in the time domain without using the periodic approximations that characterise analyses in the frequency domain. The methods of modal decomposition are related with the implementation of the Trefftz concept in both time and space.
منابع مشابه
Time integration and the Trefftz Method, Part II – Second-order and hyperbolic problems
The finite element method is applied in the time domain to establish formulations for the integration of second-order and hyperbolic (dynamic) problems. Modal decomposition in the space domain is used to recover the well-established method for uncoupling the equations of motion, which is extended to include general time approximation bases. The limitations of this approach in the implementation...
متن کاملA Gas Dynamics Method Based on the Spectral Deferred Corrections (SDC) Time Integration Technique and the Piecewise Parabolic Method (PPM)
We present a computational gas dynamics method based on the Spectral Deferred Corrections (SDC) time integration technique and the Piecewise Parabolic Method (PPM) finite volume method. The PPM framework is used to define edge-averaged quantities, which are then used to evaluate numerical flux functions. The SDC technique is used to integrate solution in time. This kind of approach was first ta...
متن کاملBending Solution for Simply Supported Annular Plates Using the Indirect Trefftz Boundary Method
This paper presents the bending analysis of annular plates by the indirect Trefftz boundary approach. The formulation for thin and thick plates is based on the Kirchhoff plate theory and the Reissner plate theory. The governing equations are therefore a fourth-order boundary value problem and a sixth-order boundary value problem, respectively. The Trefftz method employs the complete set of solu...
متن کاملA Simple Multi-Source-Point Trefftz Method for Solving Direct/Inverse SHM Problems of Plane Elasticity in Arbitrary Multiply-Connected Domains
In this paper, a generalized Trefftz method in plane elasticity is developed, for solving problems in an arbitrary multiply connected domain. Firstly, the relations between Trefftz basis functions from different source points are discussed, by using the binomial theorem and the logarithmic binomial theorem. Based on these theorems, we clearly explain the relation between the T-Trefftz and the F...
متن کاملHigher-Order Exponential Integrators for Quasi-Linear Parabolic Problems. Part I: Stability
Explicit exponential integrators based on general linear methods are studied for the time discretization of quasi-linear parabolic initial-boundary value problems. Compared to other exponential integrators encountering rather severe order reductions, in general, the considered class of exponential general linear methods provides the possibility to construct schemes that retain higher-order accu...
متن کامل